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Four decades ago in 1985, alleles of apolipoprotein E (ApoE)
€2/e3/e4 became famous for explaining 16% of genetic variance in
low-density lipoprotein cholesterol in the benchmark study of Sing
and Davignon (1): total blood cholesterol, low-density lipoprotein
cholesterol, and apolipoprotein B were elevated by ApoE €4 (ApoE4)
allele and lowered by ApoE €2 (ApoE2). The adverse associations of
ApoE4 with atherosclerosis and cardiovascular disease (CVD) (1)
were extended to shortened longevity in 1987 (2) and then to risk
of Alzheimer disease (AD) in 1993 (3). The next year, ApoE2 was
associated with lower incidence of AD and greater longevity (4,5).
ApoE is synthesized body-wide in adipocytes, hepatocytes, brain
astrocytes, and arterial wall macrophages with local roles in lipid
transport that are critical for brain, immune, and vascular functions.

ApoFE4 is the ancestral human gene (6,7) from which ApoE3 and
then ApoE2 evolved in the last 250 000 years (8). The persistence of
ApoE4 was hypothesized to be advantageous for lipophilic patho-
gens (9). In fact, apoE4 benefits hepatitis C infections (10), as well as
survival in highly infectious environments (11) and cognitive func-
tions (12,13).

This year, the ApoE locus has shown a new face with the in-
creased vulnerability of ApoE4 carriers to severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), particularly for later ages.
We briefly summarize how pleiotropies of ApoE4 may mediate mul-
tiple morbidities that increase vulnerability, and consider genes in the
ApoE cluster that may contribute to age-related host susceptibility.

Complex Genetics of the ApoE Locus

Preexisting morbidities increase risk of COVID-19 infections and
mortality: for young adults: diabetes and obesity; for older people:
diabetes and dementia (14,15). COVID-19 also damages the car-
diovascular system with atrial fibrillation, ventricular arrhythmia,
and disseminated coagulation (16). These morbidities are also
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associated with variants in the ApoE gene cluster that we hypothe-
size are relevant to COVID-19. ApoE4 homozygotes have 2.2-fold
higher risk for COVID-19 positivity and 4.3-fold more case-fatality
after COVID-19 than ApoE3 homozygotes (17,18). Heterozygosity
(e3/e4) was modestly associated with COVID-19 below linear dose
dependence. Strong associations for €4/e4 with COVID-19 were
not diminished by excluding dementia, hypertension, coronary
heart disease (CHD), or type II diabetes. Based on these associ-
ations, Kuo et al. hypothesize that ApoE4 has recessive effects on
COVID-19 outcomes and suggest that these effects are independent
of these common age-related diseases. We discuss how ApoE allele
pleiotropies can mediate COVID-19 infectivity and survival.

The multiple ApoE alleles of humans are unique among primates,
which are monomorphic for an ApoE protein that shares the R112
and R158 of human ApoE4 (12). Unlike the hemoglobin variant re-
lationship to malaria resistance, the wide variations of ApoE4 (eg,
3-fold gradient from Mediterranean to Nordic countries) has not
been linked to past environments. The ApoE locus has complex
linkage disequilibrium (LD) structures (19,20), differing by race/
ethnic groups (21,22). The variable AD risks suggest that ApoE be
considered a “major gene” rather than “risk gene” (23). We may con-
sider complex haplotypes rather than single alleles predisposing to
age-related diseases.

Associations of ApoE with AD also involve the neighboring
TOMMA40 poly-thymine repeat polymorphism (rs10524523) in the
“ApoE gene cluster” CH19q13 (Figure 1), which can increase sus-
ceptibility to AD either independently, or in cis-combination with
ApoE4 (24,25). Additionally, AD risks are increased by the haplo-
type of ApoE (rs405509_T and ApoE4) when both are in cis on the
same chromosome (26). Several complex haplotypes in the APOE
gene cluster can alter AD risk independently of ApoE4 (27). We
hypothesize that ApoE4 associations with COVID-19 extend to
the ApoE gene complex with balancing detrimental and protective
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Figure 1. ApoE and neighboring genes in the human ApoE gene cluster on chromosome 19913.32. This locus of more than 20 named genes shows extensive

conservation in mammals; in rodents, the order is reversed (inverted synteny).

effects in haplotypes, and multiple gene-by-gene transcriptional
interactions (28). This approach could identify protective genes for
COVID-19. ApoE2 also merits consideration in COVID-19, given its
benefit to CVD and AD.

CH19q19.13 includes other apolipoprotein genes, ApoCl-
ApoC4-ApoC2 (29). ApoCl1 was first known for inhibiting
cholesteryl ester transfer protein (CETP) (30). Diabetes can impair
ApoCl1 functions (31), as does CVD with dyslipidemia (32). ApoC4
also mediates triglyceride metabolism (33). Genome-wide associ-
ation studies showed that ApoCl1-ApoC4-ApoC2 modulate tri-
glycerides and high-density lipoproteins (34). Pleiotropies of ApoE
alleles for dietary lipid absorption and uptake by fat, muscle, and
brain cells (35) could include ApoC haplotypes.

Roles of ApoE in Viral Infections

Cell infection by SARS-Cov-2 is mediated by binding to ACE2
(angiotensin-converting enzyme 2), which is also a key component
of the renin—angiotensin system (RAS) in blood pressure regulation.
The cell types expressing ACE2 show relationships to organ path-
ology, and include intestinal epithelia, lung alveoli (36), myocardial
pericytes (37), and nasal epithelial (38). Drug candidates for SARC-
Cov-2 protection include several senolytics that interact with ACE2
and CD26, another host receptor (39,40).

Infections may involve indirect roles of ApoE alleles. Hepatitis
virus C binds to the ApoE protein (41). We ask, could ApoE also
bind coronaviruses? Several ApoE cluster genes may interact with
COVID-19, for example, NECTIN2 (herpes receptor HHV1) and
ApoC1 which, like ApoE, is in the HCV envelope (42). Neighboring
genes mediate inflammation (CS5a receptor, IGFL1, RELB, TGFp).
Alzheimer disease risk haplotypes include ApoE and NECTIN2
SNPs (19). ApoE cluster haplotypes associate with the same
morbidities from CVD and obesity (43,44) that increase vulner-
ability to COVID-19.

Conclusions

The ApoE trail, like a Moebius strip, takes us back to where we
started from 4 decades ago with another view. To understand how
ApoE4 may increase COVID-19 infectivity and mortality and pos-
sible haplotypes or interactions, we have returned to the original as-
sociations of ApoE variants with blood lipids, vascular disease, and
cognition. The ApoE trail has expanded beyond a single gene locus
to engage adjacent genes in the ApoE gene cluster that also modulate
CVD and AD, as well as viral infections.
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